Synthesis of 4-phenylpiperidines by tandem Wittig olefination-azaWittig rearrangement of 2-benzoylaziridines

Iain Coldham, ${ }^{*, a}$ Alan J. Collis, ${ }^{\boldsymbol{b}}$ Roger J. Mould ${ }^{a}$ and Richard E. Rathmell ${ }^{a}$
${ }^{a}$ Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
${ }^{\text {b }}$ Department of Discovery Chemistry, Pfizer Central Research, Sandwich, Kent CT13 9NJ, UK

Abstract

A number of routes to 2-vinylaziridines are reported. N-Alkylation of a range of 2-benzoyl-3-alkylaziridines with tert-butyl bromoacetate followed by Wittig olefination gave directly a range of 4-phenylpiperidines. The intermediate 2 -vinylaziridines rearrange by a [2,3]-aza-Wittig rearrangement to give the 4 -phenylpiperidines.

In 1972, Durst et al. ${ }^{1}$ reported the ring expansion of a β-lactam to a seven-membered ring lactam using the [2,3]sigmatropic rearrangement. Ring expansions of five- and six-membered quaternary ammonium salts by a $[2,3]$ sigmatropic shift are also known. ${ }^{2} \mathrm{We}^{3}$ and others, ${ }^{4}$ have been interested in promoting the aza-Wittig rearrangement using tertiary amines. We considered the possibility of effecting the [2,3]sigmatropic shift using vinylaziridines ${ }^{5}$ as this would place the breaking $\mathrm{C}-\mathrm{N}$ bond into a strained three-membered ring (so aiding rearrangement) and give access to the more widespread sixmembered cyclic amine products (Scheme 1). In this paper, we

Scheme 1
report a one-pot method for this ring expansion of aziridines to piperidines by tandem olefination-aza-Wittig rearrangement of 2-benzoylaziridines to 4 -phenylpiperidines. Related work by Åhman and Somfai ${ }^{6}$ using lithium diisopropylamide (LDA)promoted rearrangement of vinylaziridines, prepared from aziridine-2-carbaldehydes has been shown to give excellent yields of the piperidine products.

We have investigated a number of routes to N -unsubstituted vinylaziridines which would then be functionalised in preparation for the aza-Wittig rearrangement. At first we looked at the use of serine as a precursor to aziridines. Following known chemistry, ${ }^{7}$ we prepared the N-trityl aziridine 1, which was reduced to the aldehyde 2 and converted into the vinylaziridine 3 (4:1 cis:trans) using the Wittig olefination procedure (Scheme 2). All attempts, however, to cleave the N -

2

4, $\mathrm{R}=\mathrm{H}$ or Me

Scheme 2 Reagents and conditions: i, DIBAL PhMe, $-95^{\circ} \mathrm{C}, 93 \%$; ii, $\mathrm{BuPPh}_{3} \mathrm{Br}, \mathrm{BuLi}, \mathrm{THF}, 100 \%$; iii, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CHCl}_{3}, 85 \%$; iv, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CHCl}_{3}, \mathrm{MeOH}, 68 \%$
trityl group in the presence of the alkene (or aldehyde) were unsuccessful and resulted in ring-opening of the aziridine to the
amine 4. Removal of the trityl group has been reported ${ }^{7}$ from the aziridine 1 , although we found that the resulting N unsubstituted aziridine was volatile and did not undergo alkylation under standard conditions. ${ }^{8}$

We turned our attention to the preparation of vinylaziridines from epoxides using ring-opening by azide and ring-closure by triphenylphosphine. ${ }^{9}$ Azide-opening of 3-phenylglycidol 5 gave the regioisomerically-pure azido alcohol 6, as expected (Scheme 3). ${ }^{10}$ Ring-closure with triphenylphosphine gave the aziridine 7

Scheme 3 Reagents and conditions: i, $\mathrm{NaN}_{3}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{4} \mathrm{Cl}$, 80%; ii, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{MeCN}$, reflux, $6 \mathrm{~h}, 750 \%$ and 810%
together with the azetidine 8 . The isolation of the fourmembered ring 8 is interesting and suggests that this could be a useful entry to azetidines in the absence of, or protection of the secondary alcohol. The formation of the azetidine 8 led us to consider the protection of the primary alcohol 5 or 6 as a route to vinylaziridines. This approach has been shown to be successful ${ }^{6,11}$ and will be reported in due course. Attempts to prepare vinylaziridines by ring-opening of vinyl epoxides was complicated by competing $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ opening of the vinyl epoxides (or rearrangement of the resulting allylic azides by a $[3,3]$ sigmatropic shift), except when this would move the double bond out of conjugation. ${ }^{12}$

An alternative approach to the desired vinylaziridines followed chemistry reported by Nagel et al. ${ }^{13}$ and Attia et al. ${ }^{14}$ Addition of methoxylamine to a range of unsaturated phenylketones 9a-e gave the adducts 10a-e which were closed to the aziridines 11a-e using sodium methoxide (Scheme 4, Table 1). In all cases except $10 \mathrm{~b}, \mathrm{R}=\mathrm{Me}$, closure gave the aziridine trans-11 with no observed aziridine cis-11. For $\mathrm{R}=$ Me , the aziridine 11b was formed as a $1: 1$ mixture of stereoisomers (in accord with the literature ${ }^{14}$). Wittig olefination of the keto aziridines 11a-d gave the vinylaziridines 12a-d with improved yields over the two cases ($\mathrm{R}=\mathrm{Ph}$, Me) reported by Attia et al. We were now in a position to investigate

Table 1 Yields (\%) of ketones 10 and aziridines 11 and 12

Entry	R	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
\mathbf{a}	Ph	67	65	83
\mathbf{b}	Me	82	76	93
\mathbf{c}	Bu	71	49	81
\mathbf{d}	$\mathrm{Pr}^{\mathbf{i}}$	84	82	67
\mathbf{e}	$\mathrm{Bu}^{\mathbf{i}}$	13	36	-

Scheme 4 Reagents and conditions: i, $\mathrm{MeONH}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{MeOH}$; ii, $\mathrm{NaOMe}, \mathrm{MeOH} ;$ iii, $\mathrm{MePPh}_{3} \mathrm{Br}, \mathrm{NaH}$, DMSO
the alkylation and aza-Wittig rearrangement of the vinylaziridines. Alkylation of the vinylaziridines 12a,b gave the required substrates 13a (50%, 78% based on recovered 12a) and 13b (48%) (Scheme 5). Attempted alkylation of the vinylaziridines

14
Scheme 5
$\mathbf{1 2 c}, \mathbf{d}\left(\mathrm{R}=\mathrm{Bu}, \mathrm{Pr}^{\mathrm{i}}\right)$ did give the desired N -alkylated products, however, these were unstable and rearranged by a $[1,5]$ hydrogen shift ${ }^{15,16}$ to the imines $14 \mathrm{c}, \mathrm{d}\left({ }^{1} \mathrm{H}\right.$ NMR $\delta 7.69 \mathrm{ppm}$ for imine proton, $\mathrm{R}=\mathrm{Bu}$ or Pr^{\prime}). This rearrangement has precedent from related vinylaziridines, ${ }^{16}$ although the substrates 13 appear to rearrange at a faster rate than those without the phenyl group at $\mathrm{C}-2$ of the alkene. The vinylaziridine 13b, $R=M e$ rearranges only slowly at room temperature ($<5 \%$ [1,5]-hydrogen shift after 15 min) and was treated with LDA to effect the [2,3]-aza-Wittig rearrangement. We were pleased to find that the aza-Wittig rearrangement-ring expansion of the aziridine to the piperidine was successful and the piperidine cis$\mathbf{1 5 b}, \mathrm{R}=\mathrm{Me}$ was isolated as a single stereoisomer (Scheme 6).

The stereochemical outcome was surprising as the aziridine 13b exists as a $1: 1$ mixture of the trans and cis isomers. It appears
likely that the aziridine trans-13b rearranges exclusively to the piperidine cis-15b (vide infra). The aziridine cis-13b must also rearrange to give at least some of the piperidine cis-15b. Åhman et al. ${ }^{6}$ have found that a related aziridine with cis stereochemistry rearranged to a mixture of cis and trans piperidines, although we observed no piperidine trans-15b, $\mathrm{R}=\mathrm{Me}$. The aziridine 13a, $\mathrm{R}=\mathrm{Ph}$ gave decomposed material using base- or Lewis acid-mediated conditions.

Alkylation of the keto aziridines 11a-d \dagger with tert-butyl bromoacetate gave the aziridines 16a-d (54-64\%). (Scheme 7) \ddagger

Scheme 7
We had expected that Wittig olefination of 16 would result in the formation of the vinylaziridines 13. Using the same olefination conditions as used for the preparation of the vinylaziridines 12 (two equivalents $\mathrm{Ph}_{3} \mathrm{MePBr}, \mathrm{NaH}, \mathrm{DMSO}$) or using two equivalents of the phosphonium salt $\mathrm{Ph}_{3} \mathrm{MePBr}$ in DME (deprotonation by BuLi), resulted in the formation of the piperidine products 15b-d with no vinylaziridines $\mathbf{1 3}$ (Scheme 8)

(Table 2). The Wittig reagent must be effecting both the olefination of 16 and the deprotonation to the enolate needed for the rearrangement. This two step, one-pot tandem Wittig olefination-aza-Wittig rearrangement avoids the isolation of the unstable vinylaziridines and allows the synthesis of a range of piperidines, including $15 \mathrm{c}, \mathrm{d}\left(\mathrm{R}=\mathrm{Bu}, \mathrm{Pr}^{\mathrm{i}}\right)$ which were not accessible via the vinylaziridines 13 c , \mathbf{d}.

It is interesting to note that the use of dimethoxyethane as the solvent at $0^{\circ} \mathrm{C}$ or at room temperature results in the formation of only the piperidine cis-15, with no piperidine trans- 15 being observed. The preferred conformation for the [2,3]sigmatropic rearrangement must be one which has the tert-butyl ester group cis to the R group as depicted in Fig. 1. For a successful rearrangement, the vinyl group must be cis to the tert-butyl acetate group and be oriented in such a way as to allow formation of the cis alkene within the forming six-membered ring (a boat-shaped transition state, including all atoms of the aziridine). In this orientation, the ester group prefers to sit endo to the five-membered ring transition state, ${ }^{17}$ so avoiding steric interaction with H^{a} and allowing coordination of the lithium atom to the nitrogen atom.
When the Wittig olefination-aza-Wittig rearrangement was performed in DME at $40^{\circ} \mathrm{C}$ or in DMSO then some piperidine trans-15d was isolated. The trans isomer must arise either when the ester group sits in the alternative orientation, or by a different mechanism, for example, involving radical intermediates, akin to the 1,2 -Wittig rearrangement. This type of
\dagger The ketone 1le did not undergo N -alkylation, presumably for steric reasons.
\ddagger We have since found that the use of freshly-distilled tert-butyl bromoacetate improves the yield of the alkylation of N -unsubstituted aziridines.

Table 2 Tandem olefination-aza-Wittig rearrangement of aziridine 16

Aziridine	R	Conditions	Yield (\%)	cis:trans
$\mathbf{1 6 a}$	Ph	NaH, DMSO, $0^{\circ} \mathrm{C}$	-	-
$\mathbf{1 6 b}$	Me	$\mathrm{BuLi}, \mathrm{DME}$, r.t.	57	$100: 0$
$\mathbf{1 6 c}$	Bu	$\mathrm{BuLi}, \mathrm{DME}$, r.t.	55	$100: 0$
$\mathbf{1 6 d}$	Pr^{i}	$\mathrm{BuLi}, \mathrm{DME}$, r.t.	66	$100: 0$
$\mathbf{1 6 d}$	Pr^{i}	$\mathrm{BuLi}, \mathrm{DME} 0^{\circ} \mathrm{C}$	50	$100: 0$
$\mathbf{1 6 d}$	Pr^{i}	$\mathrm{BuLi}, \mathrm{DME}, 40^{\circ} \mathrm{C}$	33	$71: 29$
$\mathbf{1 6 d}$	Pr^{i}	NaH, DMSO, $0^{\circ} \mathrm{C}$	31	$58: 42$

Fig. 1
mechanism has been postulated for the rearrangement of 2,3-cis-disubstituted aziridines. ${ }^{6}$

In summary, a number of routes to 2 -vinylaziridines have been investigated. Precursor N -alkylated 2-benzoylaziridines can be prepared in just three steps from α, β-unsaturated phenyl ketones and on olefination give, not the vinylaziridines, but the ring-expanded unsaturated 4 -phenylpiperidines by a [2,3]-azaWittig rearrangement. This chemistry has potential for the synthesis of piperidine-containing natural products and other biologically-active six-membered cyclic amines.

Experimental

Infrared spectra were recorded on a Perkin-Elmer 881 spectrophotometer, using a polystyrene reference ($1602 \mathrm{~cm}^{-1}$). ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra were run on a Bruker AM250 (250 MHz) or AM300 (300 MHz) instrument, with tetramethylsilane (TMS) as the reference. J Values are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR were run on a Bruker AM250 (62.9 MHz) or AM300 (75.5 MHz) instrument. Mass spectra were run on a Kratos Profile instrument. Microanalyses were carried out by Butterworth Microanalytical Consultancy Ltd., Teddington, Middlesex.

(2RS,3RS)-3-Hydroxy-2-phenylazetidine 8

Triphenylphosphine ($2.98 \mathrm{~g}, 11.27 \mathrm{mmol}$) was added to the β azido alcohol $6^{10}(2.08 \mathrm{~g}, 10.77 \mathrm{mmol})$ in acetonitrile $\left(45 \mathrm{~cm}^{3}\right)$ under nitrogen at room temperature. The mixture was refluxed for 6 h and the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel, eluting with hexane-ethyl acetate (1:4) to remove any unchanged triphenylphosphine and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethanol (20:1) to give the aziridine $7^{18}(807 \mathrm{mg}, 50 \%)$ and the azetidine 8 $(162 \mathrm{mg}, 10 \%)$ as an oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3382(\mathrm{OH}), 3316$ $(\mathrm{NH}), 1602$ and $1491(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.50-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $4.12(1 \mathrm{H}, \mathrm{d}, J 4, \mathrm{PhCH}), 3.14(1 \mathrm{H}, \mathrm{ddd}, J 4,4$ and 2.5 , $\left.\mathrm{CHCH}_{2}\right), 2.86\left(1 \mathrm{H}, \mathrm{dd}, J 5\right.$ and $\left.2.5, \mathrm{CHC} H^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right), 2.74(1 \mathrm{H}, \mathrm{dd}$, $J 5$ and $\left.4, \mathrm{CHCH}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right)$ and $1.66(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$ and OH$)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 141.63,128.58,127.75,127.03,55.78,55.21$ and 44.15 (Found: $\mathrm{M}^{+}, 149.0840 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$ requires $M, 149.0841$); $m / z 149(1.4 \%, M)$ and $106\left(100, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right)$.

3-(Methoxyamino)-1-phenylbutan-1-one 10b

Methoxylamine hydrochloride $(1.80 \mathrm{~g}, 21.1 \mathrm{mmol})$ was added to the alkene $9 \mathrm{~b}(2.68 \mathrm{~g}, 18.4 \mathrm{mmol})$ and triethylamine (2.9 $\mathrm{cm}^{3}, 21.0 \mathrm{mmol}$) in methanol ($25 \mathrm{~cm}^{3}$) at $30^{\circ} \mathrm{C}$. The mixture was heated at $50^{\circ} \mathrm{C}$ for 2 h , then water $\left(20 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ cm^{3}) were added and the organic layer was separated. The
aqueous phase was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20$ cm^{3}). The combined organic extracts were washed with brine ($20 \mathrm{~cm}^{3}$), dried (anhydrous MgSO_{4}), filtered and the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp $40-60^{\circ} \mathrm{C}$) (1:5) to give the ketone $10 \mathrm{~b}\left(2.89 \mathrm{~g}, 82 \%\right.$) as an oil, $R_{\mathrm{f}} 0.16$ (hexane-ethyl acetate, $5: 1) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2813(\mathrm{OMe}), 1680(\mathrm{C=O}), 1598$ and $1581(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.97-7.88(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.55-7.37(3$ $\mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.63(1 \mathrm{H}$, sextet, $J 6.5, \mathrm{CH})$, $3.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.26\left(1 \mathrm{H}, \mathrm{dd}, J 17\right.$ and $\left.6.5, \mathrm{COCH}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right)$, $2.88\left(1 \mathrm{H}, \mathrm{dd}, J 17\right.$ and $\left.6.5, \mathrm{COCH}^{\mathrm{A}} H^{\mathrm{B}}\right)$ and $1.16(3 \mathrm{H}, \mathrm{d}, J 6.5$, $\left.\mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 199.17(\mathrm{C}=\mathrm{O}), 137.24(\mathrm{C}), 133.01(\mathrm{CH})$, $128.53(\mathrm{CH}), 128.02(\mathrm{CH}), 62.24\left(\mathrm{OCH}_{3}\right), 52.55\left(\mathrm{CHCH}_{3}\right)$, $42.48\left(\mathrm{CH}_{2}\right)$ and $18.17\left(\mathrm{CHCH}_{3}\right)$ (Found: $\mathbf{M}^{+}, 193.1100$. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $M, 193.1103$); $m / z 193(0.2 \%, \mathrm{M}), 105$ ($100, \mathrm{PhCO}$) and 77 (37.2, Ph).

3-(Methoxyamino)-1-phenylheptan-1-one 10c

In the same way as for ketone 10 b , methoxylamine hydrochloride ($3.0 \mathrm{~g}, 38.0 \mathrm{mmol}$), alkene $9 \mathrm{c}(6.90 \mathrm{~g}, 37.0 \mathrm{mmol})$ and triethylamine ($5.0 \mathrm{ml}, 36.2 \mathrm{mmol}$) in methanol $\left(60 \mathrm{~cm}^{3}\right)$ gave, after purification by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp $\left.40-60^{\circ} \mathrm{C}\right)(1: 10)$ the ketone $10 \mathrm{c}(6.16 \mathrm{~g}, 71 \%)$ as an oil, $R_{\mathrm{f}} 0.58$ (hexane-ethyl acetate, 10:1); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2810(\mathrm{OMe}), 1682(\mathrm{C}=\mathrm{O})$, 1598 and $1581(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.00-7.92(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.61-$ $7.39(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.52-3.45(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{NH}$), $3.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.28(1 \mathrm{H}, \mathrm{dd}, J 16$ and 7 , $\left.\mathrm{COCH}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right), 2.95\left(1 \mathrm{H}\right.$, dd, $J 16$ and $\left.5, \mathrm{COCH}^{\mathrm{A}} H^{\mathrm{B}}\right), 1.71-1.16$ $\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right]$ and $0.92\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 199.62(\mathrm{C}=0), 137.28(\mathrm{C}), 132.98(\mathrm{CH}), 128.53(\mathrm{CH})$, $128.03(\mathrm{CH}), 62.04\left(\mathrm{OCH}_{3}\right), 57.06(\mathrm{CHNH}), 40.73\left(\mathrm{CH}_{2}\right), 31.92$ $\left(\mathrm{CH}_{2}\right), 28.37\left(\mathrm{CH}_{2}\right), 22.76\left(\mathrm{CH}_{2}\right)$ and $13.97\left(\mathrm{CH}_{3}\right)$ (Found: M^{+}, 235.1570. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M, 235.1572$); $m / z 235$ (3.5%, M), 204 ($49.8, \mathrm{M}-\mathrm{OMe}$), 178 ($12.3, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}$) and 105 (PhCO).

3-(Methoxyamino)-4-methyl-1-phenylpentan-1-one 10d

In the same way as for ketone 10b, methoxylamine hydrochloride ($1.415 \mathrm{~g}, 16.95 \mathrm{mmol}$), alkene 9d $(2.95 \mathrm{~g}, 16.99$ mmol) and triethylamine ($2.35 \mathrm{~cm}^{3}, 17 \mathrm{mmol}$) in methanol (60 cm^{3}) gave, after purification by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp $40-60^{\circ} \mathrm{C}$) ($1: 8$) the ketone $10 \mathrm{~d}\left(3.17 \mathrm{~g}, 84 \%\right.$) as an oil, $R_{\mathrm{f}} 0.30$ (hexaneethyl acetate, 5:1); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2812(\mathrm{OMe}), 1678 \mathrm{C}=\mathrm{O}$), 1598 and $1581(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.00-7.92(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.60-$ $7.37(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.89(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 3.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.35(1$ H, ddd, J 8, 7 and 4, NHCH), 3.13 (1 H , dd, $J 16$ and 8 , $\left.\mathrm{COC} H^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right), 2.96\left(1 \mathrm{H}, \mathrm{dd}, J 16\right.$ and 4, $\left.\mathrm{COCH}^{\mathrm{A}} H^{\mathrm{B}}\right), 1.99[1 \mathrm{H}$, octet, $\left.J 7, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.01\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{C}^{\mathrm{A}} \mathrm{H}_{3}\right)$ and $0.98(3 \mathrm{H}, \mathrm{d}$, $\left.J 7, \mathrm{C}^{\mathrm{B}} \mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 199.89(\mathrm{C}=\mathrm{O}), 137.47(\mathrm{C}), 132.89(\mathrm{CH})$, $128.53(\mathrm{CH}), 128.05(\mathrm{CH}), 62.13\left(\mathrm{OCH}_{3}\right), 61.70(\mathrm{CHN}), 37.41$ $\left(\mathrm{CH}_{2}\right), 29.25\left(\mathrm{CHMe}_{2}\right), 19.25\left(\mathrm{CH}_{3}\right)$ and $18.51\left(\mathrm{CH}_{3}\right)$ (Found: M^{+}, 221.1410. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M, 221.1416$); $m / z 221$ $(0.9 \%, \mathrm{M}), 105$ (30.2, PhCO) and 57 (100).

3-(Methoxyamino)-4,4-dimethyl-1-phenylpentan-1-one 10e

In the same way as for ketone 10b, methoxylamine hydrochloride ($6.40 \mathrm{~g}, 76.66 \mathrm{mmol}$), alkene $9 \mathrm{e}(8.0 \mathrm{~g}, 42.5$ mmol) and triethylamine ($11.0 \mathrm{~cm}^{3}, 80 \mathrm{mmol}$) in methanol (40 cm^{3}) gave, after purification by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp $40-60^{\circ} \mathrm{C}$) ($1: 8$) the ketone $10 \mathrm{e}\left(1.28 \mathrm{~g}, 13 \%\right.$) as an oil, $R_{\mathrm{f}} 0.40$ (hexaneethyl acetate, 5:1); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2810(\mathrm{OMe}), 1680(\mathrm{C}=\mathrm{O})$, 1598 and $1581(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.00-7.92(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.47-$ $7.38(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.34(1 \mathrm{H}, \mathrm{dd}, J 8$ and 4 , $\mathrm{NHCH}), 3.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.22(1 \mathrm{H}, \mathrm{dd}, J 16$ and 8 ,
$\left.\mathrm{COC} H^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right), 2.92\left(1 \mathrm{H}, \mathrm{dd}, J 16\right.$ and $4, \mathrm{COCH}^{\mathrm{A}} H^{\mathrm{B}}$), 1.02 [9 $\left.\mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 197.35(\mathrm{C}=\mathrm{O}), 135.02(\mathrm{C}), 130.00$ $(\mathrm{CH}), 125.82(\mathrm{CH}), 125.38(\mathrm{CH}), 62.52\left(\mathrm{OCH}_{3}\right), 58.33$ (CHN), $34.87\left(\mathrm{CH}_{2}\right), 31.06(\mathrm{C})$ and $24.63\left(\mathrm{CH}_{3}\right)$ (Found: M^{+}, 235.1570. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M, 235.1572$); $\mathrm{m} / \mathrm{z} 235$ $(3.5 \%, \mathrm{M}), 204(50, \mathrm{M}-\mathrm{OMe}), 178$ ($12, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}$) and 105 (100, PhCO).

trans-2-Benzoyl-3-butylaziridine 11c

Sodium methoxide ($1.8 \mathrm{~cm}^{3}, 51 \mathrm{mmol}$) was added dropwise to the methoxylamine 10 c ($5.88 \mathrm{~g}, 25 \mathrm{mmol}$) in methanol $\left(70 \mathrm{~cm}^{3}\right)$ under argon at room temperature. The reaction was heated to $50^{\circ} \mathrm{C}$ for 8 h , then water $\left(40 \mathrm{~cm}^{3}\right)$ was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 70 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with brine ($10 \mathrm{~cm}^{3}$), dried (anhydrous MgSO_{4}), filtered and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp 40$\left.60^{\circ} \mathrm{C}\right)(1: 10)$ to give the aziridine $11 \mathrm{c}(2.5 \mathrm{~g}, 49 \%)$ as an oil, R_{f} 0.15 (hexane-ethyl acetate, 3:1); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3269(\mathrm{NH})$, $1667(\mathrm{C}=\mathrm{O}), 1598,1580$ and $1493(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.10-7.90(2$ $\mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.60-7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COCH}), 2.21-$ $2.08(2 \mathrm{H}, \mathrm{m}, \mathrm{NH}$ and NCHBu$), 1.71-1.18\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right]$ and $0.92\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 197.13(\mathrm{C}=\mathrm{O})$, 136.17 (C), $133.51(\mathrm{CH}), 128.71(\mathrm{CH}), 128.09(\mathrm{CH}), 43.24(\mathrm{CH})$, $39.73(\mathrm{CH}), 32.98\left(\mathrm{CH}_{2}\right), 29.29\left(\mathrm{CH}_{2}\right), 22.40\left(\mathrm{CH}_{2}\right)$ and 13.91 $\left(\mathrm{CH}_{3}\right)$ (Found: M^{+}, 203.1312. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$ requires M, 203.1310); $m / z 203$ (1.2%, M), 146 (44, M - $\mathrm{C}_{4} \mathrm{H}_{9}$), 105 (63, $\mathrm{PhCO})$ and $77(100, \mathrm{Ph})$.

trans-2-Benzoyl-3-isopropyl aziridine 11d

In the same way as for aziridine 11c, sodium methoxide (4.4 $\mathrm{cm}^{3}, 29.84 \mathrm{mmol}$) and the methoxylamine $10 \mathrm{~d}(3.17 \mathrm{~g}, 14.33$ mmol) in methanol ($60 \mathrm{~cm}^{3}$) gave, after 5 h at $50^{\circ} \mathrm{C}$ and purification by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum ($\mathrm{bp} 40-60^{\circ} \mathrm{C}$) ($1: 5$) the aziridine $11 \mathrm{~d}(2.210 \mathrm{~g}, 82 \%)$ as an oil, $R_{\mathrm{f}} 0.15$ (hexane-ethyl acetate, $5: 1$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3274(\mathrm{NH}), 1666(\mathrm{C}=0)$, 1598 and $1581(\mathrm{Ph})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.07-7.97(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.65-7.43(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.29$ ($1 \mathrm{H}, \mathrm{br}$ s, COCH), $2.08(1 \mathrm{H}, \mathrm{br}$ s, NH), $1.97(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7$, $\mathrm{CHCHCH}), 1.50\left(1 \mathrm{H}\right.$, octet, $\left.J 7, \mathrm{CH} \mathrm{Me}_{2}\right), 1.07(3 \mathrm{H}, \mathrm{d}, J 7$, $\mathrm{C}^{\mathrm{A}} \mathrm{H}_{3}$) and $1.03\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{C}^{\mathrm{B}} \mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 197.19(\mathrm{CO})$, $136.15(\mathrm{C}), 133.54(\mathrm{CH}), 128.75(\mathrm{CH}), 128.09(\mathrm{CH}), 49.72$ $(\mathrm{CHCO}), 38.96(\mathrm{CHCHCH}), 32.03\left(\mathrm{CHMe}_{2}\right), 20.18\left(\mathrm{CH}_{3}\right)$ and $19.62\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{M}^{+}, 189.1155 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$ requires M, 189.1154); $m / z 189(1.0 \%, M), 146\left(100, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right), 105(55.2$, $\mathrm{PhCO})$ and $77(37.7, \mathrm{Ph})$.

trans-2-Benzoyl-3-tert-butyl 11 e

In the same way as for aziridine 11c, sodium methoxide (0.93 $\mathrm{cm}^{3}, 6.31 \mathrm{mmol}$) and the methoxylamine $10 \mathrm{e}(1.8 \mathrm{~g}, 8.16 \mathrm{mmol})$ in methanol $\left(10 \mathrm{~cm}^{3}\right)$ gave, after 48 h at $50^{\circ} \mathrm{C}$ and purification by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp $\left.40-60^{\circ} \mathrm{C}\right)(1: 10)$ the aziridine 11 e $(0.60 \mathrm{~g}, 36 \%)$ as an oil, $R_{\mathrm{f}} 0.28$ (hexane-ethyl acetate, $10: 1$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3276(\mathrm{NH}), 1667(\mathrm{C}=\mathrm{O}), 1598$ and $1581(\mathrm{Ph}) ;$ $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.05-7.97(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.64-7.47(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.34$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 2.05(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCHN})$ and $0.98[9 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 195.03(\mathrm{CO}), 133.52(\mathrm{C}), 130.89(\mathrm{CH})$, $126.13(\mathrm{CH}), 125.44(\mathrm{CH}), 49.99(\mathrm{CHN}), 34.12(\mathrm{CH}), 28.63(\mathrm{C})$ and $24.12\left(\mathrm{CH}_{3}\right)$.

trans-2-butyl-3-(1-phenylvinyl)aziridine 12c

Butyllithium ($2.5 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; $1.98 \mathrm{~cm}^{3}, 4.95 \mathrm{mmol}$) was added to methyl(triphenyl)phosphonium bromide (1.78 g , 4.93 mmol) in 1,2 -dimethoxyethane (DME) ($15 \mathrm{~cm}^{3}$) under nitrogen at room temperature. After 20 min the ketone 11c (0.5
$\mathrm{g}, 2.46 \mathrm{mmol}$) in DME ($5 \mathrm{~cm}^{3}$) was added and the mixture was stirred for 6 h . Water ($20 \mathrm{~cm}^{3}$) was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The organic extracts were dried (anhydrous MgSO_{4}), filtered and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp $40-60^{\circ} \mathrm{C}$) ($1: 3$) to give the vinyl aziridine 12 c $(0.40 \mathrm{~g}, 81 \%), R_{\mathrm{f}} 0.15$ (hexane-ethyl acetate, $2: 1$); $v_{\max }(\mathrm{CH}-$ $\left.\mathrm{Cl}_{3}\right) / \mathrm{cm}^{-1} 3269(\mathrm{NH}), 1672(\mathrm{C}=\mathrm{C}), 1626$ (NH bend), 1598,1574 and $1494(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.53-7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.38-7.26(3$ $\mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.36\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right), 5.17\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH}^{\mathrm{A}} H^{\mathrm{B}}\right)$, $2.49(1 \mathrm{H}, \mathrm{d}, J 3, \mathrm{CC} H \mathrm{NH}), 1.94-1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} 2), 1.72-$ $1.33\left[7 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right.$ and NH$]$ and $0.92\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 147.27\left(\mathrm{C}=\mathrm{CH}_{2}\right), 139.64(\mathrm{C}), 128.33(\mathrm{CH}), 127.80$ $(\mathrm{CH}), 126.23(\mathrm{CH}), 110.57\left(\mathrm{C}=\mathrm{CH}_{2}\right), 40.29(\mathrm{CH}), 39.76(\mathrm{CH})$, $33.95\left(\mathrm{CH}_{2}\right), 29.64\left(\mathrm{CH}_{2}\right), 22.55\left(\mathrm{CH}_{2}\right)$ and $14.00\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{M}^{+}, 201.1523 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}$ requires M, 201.1517); m / z $201(20.6 \%, \mathrm{M}), 158$ (19.6, M - $\mathrm{C}_{3} \mathrm{H}_{7}$) and 144 ($100, \mathrm{M}-$ $\mathrm{C}_{4} \mathrm{H}_{9}$).

trans-2-Isopropyl-3-(1-phenylvinyl)aziridine 12d

Sodium hydride (60% dispersion in oil; $300 \mathrm{mg}, 7.5 \mathrm{mmol}$) was washed with hexane $\left(2 \times 6 \mathrm{~cm}^{3}\right)$. Dry dimethyl sulfoxide (DMSO) ($20 \mathrm{~cm}^{3}$) was added and the mixture heated to $70^{\circ} \mathrm{C}$ for 45 min , before being cooled to $0^{\circ} \mathrm{C}$. Methyl(triphenyl)phosphine bromide ($2.672 \mathrm{~g}, 7.5 \mathrm{mmol}$) in DMSO ($10 \mathrm{~cm}^{3}$) was added dropwise and the mixture was stirred at room temperature for 30 min before the ketone $11 \mathrm{~d}(550 \mathrm{mg}, 2.91$ mmol) in DMSO ($10 \mathrm{~cm}^{3}$) was added. After 30 min , water (50 cm^{3}) was added and the mixture was extracted with diethyl ether ($3 \times 30 \mathrm{~cm}^{3}$). The combined organic extracts were washed with brine ($30 \mathrm{~cm}^{3}$), dried (anhydrous MgSO_{4}), filtered and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp $40-60^{\circ} \mathrm{C}$) (1:4) to give the alkene $12 \mathrm{~d}\left(363 \mathrm{mg}, 67 \%\right.$) as an oil, $R_{\mathrm{f}} 0.25$ (hexane-ethyl acetate, 4:1); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3303(\mathrm{NH}), 1625(\mathrm{C}=\mathrm{C}), 1599$, 1573 and $1492(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.59-7.47 $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.43$7.26(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.35\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{C} H^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right), 5.18(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}=\mathrm{CH}^{\mathrm{A}} H^{\mathrm{B}}\right), 2.56(1 \mathrm{H}, \mathrm{d}, J 3, \mathrm{CCH}), 1.75(1 \mathrm{H}, \mathrm{dd}, J 7$ and 3 , $\mathrm{CHCHCH}), 1.41\left(1 \mathrm{H}\right.$, octet, $\left.J 7, \mathrm{CHMe}_{2}\right), 1.09(1 \mathrm{H}, \mathrm{d}, J 7$, $\mathrm{C}^{\mathrm{A}} \mathrm{H}_{3}$) and $1.06\left(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{C}^{\mathrm{B}} \mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 147.50$ $\left(\mathrm{C}=\mathrm{CH}_{2}\right), 139.83(\mathrm{C}), 128.31(\mathrm{CH}), 127.77(\mathrm{CH}), 126.36(\mathrm{CH})$, $110.78\left(\mathrm{CH}_{2}\right), 46.78(\mathrm{CH}), 39.04(\mathrm{CH}), 32.70\left(\mathrm{CHMe}_{2}\right), 20.20$ $\left(\mathrm{CH}_{3}\right)$ and $20.10\left(\mathrm{CH}_{3}\right)$ (Found: M^{+}, 187.1352. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}$ requires $M, 187.1361$); $m / z 187(5 \%, M), 144\left(30.4, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$ and 57 (100).

(2'RS,3' $\mathbf{R S S}^{\prime}$)-tert-Butyl 2-[2'-phenyl-3-(1-phenylvinyl)aziridin-1yl]acetate 13a

tert-Butyl bromoacetate $\left(0.44 \mathrm{~cm}^{3}, 2.68 \mathrm{mmol}\right)$ was added dropwise to the aziridine 12 a ($512 \mathrm{mg}, 2.32 \mathrm{mmol}$) and potassium carbonate ($64 \mathrm{mg}, 0.46 \mathrm{mmol}$) in acetonitrile $\left(8 \mathrm{~cm}^{3}\right)$ under argon at room temperature followed by the addition of further potassium carbonate ($360 \mathrm{mg}, 2.60 \mathrm{mmol}$). After 37 h , water ($20 \mathrm{~cm}^{3}$) was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 15 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with brine ($15 \mathrm{~cm}^{3}$), dried (anhydrous MgSO_{4}), filtered and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetate-hexane ($1: 8$) to give the aziridine 13a (390 mg , 50%) as an oil, $R_{\mathrm{f}} 0.42$ (hexane-ethyl acetate, 4:1); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1736(\mathrm{C}=\mathrm{O}), 1599$ and $1492(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ ${ }_{7.71-7.22}(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.97-5.35\left(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CCH}_{2}\right), 3.45-$ 2.87 (4 H , br m, PhCHCH and NCH_{2}) and $1.38[9 \mathrm{H}, \mathrm{s}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$] (Found: $\mathrm{M}^{+}, 335.1882 . \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires M, 335.1885); m/z 335 ($1.6 \%, \mathrm{M}$), 278 ($7.3, \mathrm{M}-\mathrm{Bu}^{t}$) and 91 (100).
($2^{\prime} R S, 3^{\prime} R S$)- and ($2^{\prime} R S, 3^{\prime} R$)-tert-Butyl 2-[2'-methyl-3'-(1-phenylvinyl)aziridin-1-yl]acetate 13b In the same way as for the aziridine 13a, tert-butyl bromoacetate $\left(0.27 \mathrm{~cm}^{3}, 1.62\right.$ mmol), the aziridine $\mathbf{1 2 b}(242 \mathrm{mg}, 1.5 \mathrm{mmol})$ and potassium carbonate ($416 \mathrm{mg}, 3.04 \mathrm{mmol}$) in acetonitrile $\left(8 \mathrm{~cm}^{3}\right)$, gave, after purification by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp $40-60^{\circ} \mathrm{C}$) ($1: 4$), the aziridine $13 \mathrm{~b}(200 \mathrm{mg}, 48 \%$) as a mixture ($1: 1$) of cis and trans diastereoisomers as an oil, $R_{\mathrm{f}} 0.34$ (hexane-ethyl acetate, 4:1); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1735(\mathrm{C}=\mathrm{O}), 1672(\mathrm{C}=\mathrm{C})$, 1600,1574 and $1494(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.62-7.24(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 5.82(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 5.49(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 5.41(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}=\mathrm{CH}), 5.17(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 3.38\left(1 \mathrm{H}, \mathrm{d}, J 16, \mathrm{CH}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right)$, $3.26\left(1 \mathrm{H}, \mathrm{d}, J 16, \mathrm{CH}^{\mathrm{A}} H^{\mathrm{B}}\right), 3.18\left(1 \mathrm{H}, \mathrm{d}, J 16, \mathrm{CH}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right)$, 2.80-2.73 (1 H, m, CHCHMe), $2.66\left(1 \mathrm{H}, \mathrm{d}, J 16, \mathrm{CH}^{\mathrm{A}} H^{\mathrm{B}}\right)$, 2.16-2.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHCHMe}$), $1.97-1.89(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe})$ and $1.54-1.38\left[24 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Me}\right.$ and $\left.2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 170.52$ and $170.14(\mathrm{C}=\mathrm{O}), 145.47$ and $140.88(\mathrm{C})$, 139.75 and $139.24(\mathrm{C}), 128.51$ and $128.31(\mathrm{CH}), 128.22$ and $128.09(\mathrm{CH}), 127.56$ and $125.84(\mathrm{CH}), 116.46$ and 111.90 $\left(\mathrm{CH}_{2}\right), 81.02$ and $80.84(\mathrm{C}), 54.32$ and $54.05\left(\mathrm{CH}_{2}\right), 48.98$ and $47.06(\mathrm{CH}), 40.74$ and $39.78(\mathrm{CH}), 28.09\left[2 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 18.08 and $11.31\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{M}^{+}, 273.1723 . \mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires $M, 273.1728$); $m / z 273(16.6 \%, \mathrm{M}), 258(9, \mathrm{M}-\mathrm{Me})$, 217 (100, M - Bu^{t}), 202 (79, $\mathbf{M}-\mathrm{Me}-\mathrm{Bu}^{t}$), 172 ($95, \mathrm{M}-$ $\mathrm{CO}_{2} \mathrm{Bu}^{t}$) and 145 (96).

(2RS,6RS)-tert-Butyl 6-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine-2-carboxylate cis-15b

Method A. Butyllithium ($0.32 \mathrm{~cm}^{3}, 0.80 \mathrm{mmol}$) was added to diisopropylamine $\left(0.12 \mathrm{~cm}^{3}, 0.91 \mathrm{mmol}\right)$ in tetrahydrofuran (THF) $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under argon. After 1 h , the mixture was cooled to $-78^{\circ} \mathrm{C}$ and the aziridine 13 a ($160 \mathrm{mg}, 0.59 \mathrm{mmol}$) in THF ($5 \mathrm{~cm}^{3}$) was added dropwise. After 5 min , water ($5 \mathrm{~cm}^{3}$) was added and the mixture was allowed to warm to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with brine ($20 \mathrm{~cm}^{3}$), dried (anhydrous MgSO_{4}), filtered and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp $40-60^{\circ} \mathrm{C}$) ($1: 2$) to give tetrahydropyridine cis$15 \mathrm{~b}\left(101 \mathrm{mg}, 63 \%\right.$) as an oil, $R_{\mathrm{f}} 0.22$ (hexane-ethyl acetate, $3: 2$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3335(\mathrm{NH}), 1725(\mathrm{C}=\mathrm{O}), 1644(\mathrm{C}=\mathrm{C}), 1600$, 1577 and $1494(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.31-7.21(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.97-$ $5.94(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 3.72-3.62(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 3.61(1 \mathrm{H}, \mathrm{dd}, J$ 11 and $4.5, \mathrm{CHCO}), 2.68(1 \mathrm{H}$, dddd, $J 16.5,4,3$ and 1 , $\left.\mathrm{C} H^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right), 2.52\left(1 \mathrm{H}\right.$, dddd, $J 16.5,11,4$ and $\left.2.5, \mathrm{CH}^{\mathrm{A}} H^{\mathrm{B}}\right), 2.05(1$ H , br s, NH), $1.50\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $1.28(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.\mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 172.30(\mathrm{C}=\mathrm{O}), 140.86(\mathrm{C}=\mathrm{CH}), 134.34(\mathrm{C})$, $128.89(\mathrm{CH}), 127.21(\mathrm{CH}), 125.13(\mathrm{CH}), 81.35\left(\mathrm{CMe}_{3}\right), 56.76$ $(\mathrm{CH}), 50.44(\mathrm{CH}), 30.68\left(\mathrm{CH}_{2}\right), 28.07\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and 22.03 $\left(\mathrm{CHCH}_{3}\right)$ (Found: $\mathrm{M}^{+}, 273.1729 . \mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires M, 273.1729); $m / z 273(8.1 \%, \mathrm{M}), 216\left(14.8, \mathrm{M}-\mathrm{Bu}^{t}\right)$ and 172 ($100, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Bu}^{t}$).

Method B. Butyllithium ($2.5 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexanes; 0.44 $\mathrm{cm}^{3}, 1.10 \mathrm{mmol}$) was added dropwise to methyl(triphenyl)phosphonium bromide ($435 \mathrm{mg}, 1.22 \mathrm{mmol}$) in DME ($8 \mathrm{~cm}^{3}$) under nitrogen at room temperature. After 15 min the mixture was transferred by cannula to the aziridine $\mathbf{1 6 b}$ (140 $\mathrm{mg}, 0.52 \mathrm{mmol}$) in DME ($4 \mathrm{~cm}^{3}$). After 30 min , water (20 cm^{3}) was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~cm}^{3}$). The combined organic extracts were washed with brine ($20 \mathrm{~cm}^{3}$), dried (anhydrous MgSO_{4}), filtered and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp $\left.40-60^{\circ} \mathrm{C}\right)(1: 2)$ to give tetrahydropyridine cis-15b ($80 \mathrm{mg}, 57 \%$) as an oil, data as above.
(2RS,6RS)-tert-Butyl 6-butyl-4-phenyl-1,2,3,6-tetrahydro-pyridine-2-carboxylate cis-15c
In the same way as for the tetrahydropyridine cis-15b, method B, butyllithium ($2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexane, $0.28 \mathrm{~cm}^{3}, 0.70 \mathrm{mmol}$), methyl(triphenyl)phosphonium bromide ($269 \mathrm{mg}, 0.75 \mathrm{mmol}$) in DME ($4 \mathrm{~cm}^{3}$) and the aziridine $16 \mathrm{c}(96 \mathrm{mg}, 0.30 \mathrm{mmol})$ in DME ($2 \mathrm{~cm}^{3}$) gave, after purification by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp 40$\left.60^{\circ} \mathrm{C}\right)(1: 7)$ the tetrahydropyridine cis- $15 \mathrm{c}(52 \mathrm{mg}, 55 \%)$ as an oil, $R_{f} 0.38$ (hexane-ethyl acetate, $5: 1$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3339$ $(\mathrm{NH}), 1727(\mathrm{C}=\mathrm{O}), 1599$ and $1493(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.37-7.16(5$ $\mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.00(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH}), 3.58(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and 4.5 , $\left.\mathrm{CHCO}), 3.57-3.48(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH})_{2}\right), 2.74-2.44(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CCH}_{2}\right), 2.00(1 \mathrm{H}$, br s, NH$), 1.70-1.31\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.54$ $\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$] and $0.92\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $172.50(\mathrm{C}=\mathrm{O}), 141.20(\mathrm{C}=\mathrm{CH}), 134.73(\mathrm{C}), 128.40(\mathrm{CH}), 127.98$ $(\mathrm{CH}), 127.22(\mathrm{CH}), 125.25(\mathrm{CH}), 81.32\left(\mathrm{CMe}_{3}\right), 56.77(\mathrm{CH})$, $55.04(\mathrm{CH}), 36.23\left(\mathrm{CH}_{2}\right), 31.18\left(\mathrm{CH}_{2}\right), 28.12\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.01$ $\left(\mathrm{CH}_{2}\right), 22.85\left(\mathrm{CH}_{2}\right)$ and $13.98\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{M}^{+}, 315.2209$. $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{2}$ requires $M, 315.2209$); $m / z 315(10.8 \%, \mathrm{M}), 258$ (33.1, $\mathrm{M}-\mathrm{Bu}^{l}$) and 83 (100).

(2RS,6RS)-tert-Butyl 6-isopropyl-4-phenyl-1,2,3,6-tetrahydro-pyridine-2-carboxylate cis-15d

In the same way as for the tetrahydropyridine cis-15b, method B, butyllithium ($1.8 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexane; $0.70 \mathrm{~cm}^{3}, 1.26 \mathrm{mmol}$), methyl(triphenyl)phosphonium bromide ($460 \mathrm{mg}, 1.29 \mathrm{mmol}$) in DME ($8 \mathrm{~cm}^{3}$) and the aziridine $16 d(182 \mathrm{mg}, 0.60 \mathrm{mmol})$ in DME ($4 \mathrm{~cm}^{3}$) gave, after purification by flash chromatography on silica gel, cluting with cthyl acetate-light petroleum (bp $40-$ $\left.60^{\circ} \mathrm{C}\right)(1: 8)$ the tetrahydropyridine cis- $15 \mathrm{~d}(119 \mathrm{mg}, 66 \%)$ as an oil, $R_{f} 0.35$ (hexane-ethyl acetate, $5: 1$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3351$ $(\mathrm{NH}), 1724(\mathrm{C}=\mathrm{O}), 1598$ and $1494(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.42-7.21$ (5 $\mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.04-6.01(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 3.58(1 \mathrm{H}, \mathrm{dd}, J 16$ and 4 , CHCO), 3.42-3.36(1 H, m, CHPri), $2.69(1 \mathrm{H}$, dddd, $J 16,4,3$ and $\left.0.5, \mathrm{CH}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right), 2.52(1 \mathrm{H}$, dddd, $J 16,11,4$ and 2, $\left.\mathrm{CH}^{\mathrm{A}} H^{\mathrm{B}}\right), 2.12(1 \mathrm{H}$, br s, NH$\left.), 1.90-1.78(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe})_{2}\right)$, $1.50\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.03\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHC}^{\mathrm{A}} \mathrm{H}_{3}\right)$ and $1.02(3$ $\left.\mathrm{H}, \mathrm{d}, J 7, \mathrm{CHC}^{\mathrm{B}} H_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) \quad 172.53(\mathrm{C}=\mathrm{O}), 141.25$ $(C=\mathrm{CH}), 135.58(\mathrm{C}), 128.32(\mathrm{CH}), 127.12(\mathrm{CH}), 126.13(\mathrm{CH})$, $125.16(\mathrm{CH}), 81.26\left(\mathrm{CMe}_{3}\right), 60.60(\mathrm{CH}), 56.74(\mathrm{CH}), 33.01$ $\left(\mathrm{CHMe}_{2}\right), 31.26\left(\mathrm{CH}_{2}\right), 28.11\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 18.52\left(\mathrm{CH}_{3}\right)$ and $18.47\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{M}^{+}, 301.2043 . \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires M, 301.2042); $m / z 301$ ($1.5 \%, \mathrm{M}$), 258 (32.9, $\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}$) and 84 (100).

(2RS,6SR)-tert-Butyl 6-isopropyl-4-phenyl-1,2,3,6-tetrahydro-pyridine-2-carboxylate trans-15d

Sodium hydride ($95 \mathrm{mg}, 2.38 \mathrm{mmol}$), washed with hexane and dry DMSO ($15 \mathrm{~cm}^{3}$) were heated to $65^{\circ} \mathrm{C}$ for 45 min . The mixture was then cooled to $0^{\circ} \mathrm{C}$ and methyl(triphenyl)phosphonium bromide ($890 \mathrm{mg}, 2.5 \mathrm{mmol}$) in DMSO $\left(8 \mathrm{~cm}^{3}\right)$ was added dropwise. The mixture was allowed to warm to room temperature and stirred for 30 min . The ketone $\mathbf{1 6 d}(310 \mathrm{mg}$, 1.02 mmol) in DMSO $\left(4 \mathrm{~cm}^{3}\right)$ was added dropwise at room temperature. After 90 min , water ($30 \mathrm{~cm}^{3}$) was added and the mixture extracted with diethyl ether $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with brine ($30 \mathrm{~cm}^{3}$), dried (anhydrous MgSO_{4}), filtered and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp $\left.40-60^{\circ} \mathrm{C}\right)(1: 8)$ to give the tetrahydropyridine cis-15d ($55 \mathrm{mg}, 18 \%$) as an oil, data as above and the tetrahydropyridine trans-15d ($40 \mathrm{mg}, 13 \%$) as an oil, $R_{f} 0.24$ (hexane-ethyl acetate, $5: 1) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3362(\mathrm{NH})$, $1721(\mathrm{C}=\mathrm{O}), 1599$ and $1495(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.43-7.18(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 6.03-5.98(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 3.79(1 \mathrm{H}, \mathrm{t}, J 5, \mathrm{CHCO})$,
3.46 ($1 \mathrm{H}, \mathrm{td}, J 5$ and $3, \mathrm{CHPr}$), $2.85-2.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 2.38 (1 H , br s, NH), 1.78 (1 H , octet, $J 7 \mathrm{Z}_{2} \mathrm{CHMe}_{2}$), 1.48 [9 $\left.\mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.02\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHC}^{\mathrm{A}} \mathrm{H}_{3}\right)$ and $1.00(3 \mathrm{H}, \mathrm{d}$, $\left.J 7, \mathrm{CHC}^{\mathrm{B}} \mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 173.21(\mathrm{C}=0), 141.65(\mathrm{C}=\mathrm{CH})$, $134.76(\mathrm{C}), 128.28(\mathrm{CH}), 127.00(\mathrm{CH}), 125.58(\mathrm{CH}), 125.26$ $(\mathrm{CH}), 81.02\left(\mathrm{CMe}_{3}\right), \quad 57.08(\mathrm{CH}), \quad 54.22(\mathrm{CH}), 33.48$ $\left(\mathrm{CHMe}_{2}\right), 29.59\left(\mathrm{CH}_{2}\right), 28.09\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.04\left(\mathrm{CH}_{3}\right)$ and $18.65\left(\mathrm{CH}_{3}\right)$ (Found: $\mathrm{M}^{+}, 301.2049 . \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires M, 301.2042); $m / z 301$ ($2.3 \%, M$), 258 ($27.4, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}$) and 202 ($100, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{15}$).

(2'RS,3'SR)-tert-Butyl 2-(2'-benzoyl-3'-phenylaziridin-l-yl)-

 acetate 16atert-Butyl bromoacetate ($1.0 \mathrm{~cm}^{3}, 6.09 \mathrm{mmol}$) was added dropwise to the aziridine $11 \mathrm{a}(1.11 \mathrm{~g}, 4.97 \mathrm{mmol})$, 18 -crown-6 (35 mg) and potassium carbonate $(1.41 \mathrm{~g}, 10.0 \mathrm{mmol})$ in acetonitrile ($15 \mathrm{~cm}^{3}$) under nitrogen at room temperature. The mixture was heated to $55^{\circ} \mathrm{C}$ for 48 h , then water ($20 \mathrm{~cm}^{3}$) was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with brine (30 cm^{3}), dried (anhydrous MgSO_{4}), filtered and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetatelight petroleum ($\mathrm{bp} 40-60^{\circ} \mathrm{C}$) (1:7) to give the aziridine 16a [$480 \mathrm{mg}, 29 \%$ (58% based on recovered starting material)] as a white solid, recrystallised from hexane, $\mathrm{mp} 105.0-106.0^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ 0.33 (hexane-ethyl acetate, 4:1); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1734$ $(\mathrm{C}=\mathrm{O}), 1665(\mathrm{C}=\mathrm{O}), 1598,1581$ and $1494(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.04$ $\left(2 \mathrm{H}\right.$, br d, $J 7, \mathrm{C}_{6} \mathrm{H}_{2}$), 7.63-7.25 ($8 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{3}$ and Ph), 3.86 (1 $\mathrm{H}, \mathrm{brd}, J 17, \mathrm{NCH}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}$), $3.76(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{CHCO}), 3.72(1 \mathrm{H}$, br d, $\left.J 17, \mathrm{NCH}^{\mathrm{A}} H^{\mathrm{B}}\right), 3.46(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{PhC} H)$ and $1.36[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 195.13(\mathrm{C}=\mathrm{O}), 169.59\left(\mathrm{CO}_{2}\right), 138.30(\mathrm{C})$, $137.94(\mathrm{C}), 133.32(\mathrm{CH}), 128.63(\mathrm{CH}), 128.52(\mathrm{CH}), 128.43$ $(\mathrm{CH}), 127.71(\mathrm{CH}), 126.47(\mathrm{CH}), 81.13\left(\mathrm{CMe}_{3}\right), 52.91\left(\mathrm{CH}_{2}\right)$, $49.61(\mathrm{COCH}), 46.85(\mathrm{CHPh})$ and $27.95\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ (Found: $\mathrm{M}^{+}, 337.1682 . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $M, 337.1678$); $m / z 338$ $(3.2 \%, M+H), 337(13.5, M), 281\left[(M+H)-C_{4} H_{9}\right]$ and 105 (98.4, PhCO) (Found: C, 74.7; H, 6.8; N, 4.2. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $\mathrm{C}, 74.75 ; \mathrm{H}, 6.87 ; \mathrm{N}, 4.15 \%$).

(2'RS,3'SR)-tert-Butyl 2-(2'-benzoyl-3'-methylaziridin-1-yl)-

 acetate 16btert-Butyl bromoacetate $\left(0.50 \mathrm{~cm}^{3}, 3.0 \mathrm{mmol}\right)$ was added dropwise to a mixture of aziridine $11 \mathrm{~b}(362 \mathrm{mg}, 2.25 \mathrm{mmol})$ and potassium carbonate ($620 \mathrm{mg}, 4.50 \mathrm{mmol}$) in acetonitrile (8 cm^{3}) under nitrogen at room temperature. After 24 h , water (20 cm^{3}) was added and the mixture was extracted with dichloromethane $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with brine ($20 \mathrm{~cm}^{3}$), dried (anhydrous MgSO_{4}), filtered and the solvent evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel, eluting with ethyl acetate-light petroleum (bp $\left.40-60^{\circ} \mathrm{C}\right)(2: 5)$ to give the aziridine $\mathbf{1 6 b}$ ($395 \mathrm{mg}, 64 \%$) as a white solid, recrystallised from hexane, $\mathrm{mp} 55.0-56.0^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.29$ (hexaneethyl acetate, 2:1); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1734(\mathrm{C}=0), 1665(\mathrm{C}=0)$, 1590 and $1580(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.07-7.97(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.62$7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.61\left(1 \mathrm{H}, \mathrm{d}, J 17, \mathrm{NC} H^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right), 3.46(1 \mathrm{H}, \mathrm{d}$, $J 17, \mathrm{NCH}^{\mathrm{A}} H^{\mathrm{B}}$), 3.43 ($1 \mathrm{H}, \mathrm{d}, J 3, \mathrm{COCH}$), 2.44 ($1 \mathrm{H}, \mathrm{qd}, J 5$ and $\left.3, \mathrm{CHCH}_{3}\right), 1.37\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 5, \mathrm{CHCH}_{3}\right)$ and $1.36[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathbf{C}}\left(\mathrm{CDCl}_{3}\right) 196.05(\mathrm{CO}), 169.80\left(\mathrm{CO}_{2}\right), 138.14$ $(\mathrm{C}), 133.16(\mathrm{CH}), 128.57(\mathrm{CH}), 128.39(\mathrm{CH}), 80.93\left(\mathrm{CMe}_{3}\right)$, $52.88\left(\mathrm{CH}_{2}\right), 43.68(\mathrm{CH}), 43.63(\mathrm{CH}), 27.93\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $18.00\left(\mathrm{CHCH}_{3}\right)$ (Found: $\mathrm{M}^{+}, 275.1511 . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $M, 275.1521$); $m / z 275(2.6 \%, \mathrm{M}), 204$ (100), 174 (52.8, M $-\mathrm{CO}_{2} \mathrm{Bu}^{t}$) and 105 ($100, \mathrm{PhCO}$) (Found: C, 69.8; $\mathrm{H}, 7.6 ; \mathrm{N}, 5.0 . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $\mathrm{C}, 69.79 ; \mathrm{H}, 7.69$; N , 5.09%).
(2'RS,3'SR)-tert-Butyl 2-(2'-benzoyl-3'-butylaziridin-1yl)acetate 16c
In the same way as for the aziridine 16b, tert-butyl bromoacetate ($0.46 \mathrm{~cm}^{3}, 2.97 \mathrm{mmol}$), the aziridine $11 \mathrm{c}(600 \mathrm{mg}$, 2.96 mmol) and potassium carbonate ($0.8 \mathrm{~g}, 6.0 \mathrm{mmol}$) in acetonitrile ($10 \mathrm{~cm}^{3}$), gave, after 72 h , the aziridine $16 \mathrm{c}(500 \mathrm{mg}$, 54%) as an oil, $R_{\mathrm{f}} 0.34$ (hexane-ethyl acetate, 5:1); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1735(\mathrm{C}=0), 1665(\mathrm{C}=0), 1597$ and 1480 $(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.03-7.95(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.53-7.45(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $3.52\left(1 \mathrm{H}, \mathrm{d}, J 17, \mathrm{NC}^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right), 3.47\left(1 \mathrm{H}, \mathrm{d}, J 17, \mathrm{NCH}^{\mathrm{A}} H^{\mathrm{B}}\right), 3.45$ $(1 \mathrm{H}, \mathrm{d}, J 2, \mathrm{PhCOC} H \mathrm{~N}), 2.37\left(1 \mathrm{H}, \mathrm{td}, J 4\right.$ and $\left.2, \mathrm{NCHCH}_{2}\right)$, $1.70-1.25\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.30\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $0.84(3$ $\left.\mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 196.12(\mathrm{C}=\mathrm{O}), 169.75(\mathrm{C}=\mathrm{O})$, 138.77 (C), $133.10(\mathrm{CH}), 128.55(\mathrm{CH})$, $128.39(\mathrm{CH}), 80.88(\mathrm{C})$, $53.13\left(\mathrm{CH}_{2}\right), 48.63(\mathrm{CH}), 42.86(\mathrm{CH}), 32.41\left(\mathrm{CH}_{2}\right), 29.14$ $\left(\mathrm{CH}_{2}\right), 27.89\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 22.37\left(\mathrm{CH}_{2}\right) \text { and } 13.92\left(\mathrm{CH}_{3}\right)(\mathrm{Found}: ~}^{\text {a }}\right.$ M^{+}, 317.1990. $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}$ requires $M, 317.2002$); $m / z 317$ $(1.3 \%, \mathrm{M}), 261$ (12.8, $\left.\mathrm{M}-\mathrm{Bu}^{t}\right)$, 105 (49, PhCO) and 77 (100, Ph).
(2'RS,3'SR)-tert-Butyl 2-(2'-benzoyl-3'-isopropyl)aziridin-1-yl)acetate 16d
In the same way as for the aziridine 16b, tert-butyl bromoacetate ($0.80 \mathrm{~cm}^{3}, 4.80 \mathrm{mmol}$), the aziridine 11d $(687 \mathrm{mg}$, 3.63 mmol) and potassium carbonate ($979 \mathrm{mg}, 7.10 \mathrm{mmol}$) in acetonitrile ($20 \mathrm{~cm}^{3}$), gave, after 5 days, the aziridine 16d (695 $\mathrm{mg}, 63 \%$) as a white solid, recrystallised from hexane, mp $65.0-$ $66.0{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.25$ (hexane-ethyl acetate, $4: 1$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1736(\mathrm{C}=\mathrm{O}), 1666(\mathrm{C}=\mathrm{O}), 1599$ and $1581(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.10-$ $7.97(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.70-7.47(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.63(1 \mathrm{H}, \mathrm{d}, J 16$, $\left.\mathrm{NC} H^{\mathrm{A}} \mathrm{H}^{\mathrm{B}}\right), 3.53(1 \mathrm{H}, \mathrm{d}, J 3, \mathrm{PhCOC} H), 3.50(1 \mathrm{H}, \mathrm{d}, J, 16$, $\left.\mathrm{NCH}^{\mathrm{A}} H^{\mathrm{B}}\right), 2.17\left(1 \mathrm{H}, \mathrm{dd}, J 7\right.$ and 3, $\mathrm{C} H \mathrm{CHMe}_{2}$), $1.51(1 \mathrm{H}$, octet, $J 7, \mathrm{CHMe} 2), 1.37\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.06(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$, $\mathrm{C}^{\mathrm{A}} \mathrm{H}_{3}$) and $0.93\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{C}^{\mathrm{B}} \mathrm{H}_{3}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 196.16(\mathrm{CO})$, $169.78\left(\mathrm{CO}_{2}\right), 138.20(\mathrm{C}), 133.10(\mathrm{CH}), 128.57(\mathrm{CH}), 128.42$ $(\mathrm{CH}), 80.90\left(\mathrm{CMe}_{3}\right), 55.27(\mathrm{CHCO}), 53.47\left(\mathrm{CH}_{2}\right), 42.03$ $\left(\mathrm{CHCHMe}_{2}\right), 31.71\left(\mathrm{CHMe}_{2}\right), 27.92 \quad\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right],} 20.22\right.$ $\left(\mathrm{CHCH}_{3}\right)$ and $19.33\left(\mathrm{CHCH}_{3}\right)$ (Found: $\mathrm{M}^{+}, 303.1843$. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires $M, 303.1834$); $\mathrm{m} / \mathrm{z} 303(0.3 \%, \mathrm{M}), 260$ (8.6, M - $\mathrm{C}_{3} \mathrm{H}_{7}$), 204 (100) and 202 (11.2, $\mathrm{M}-\mathrm{CO}_{2} \mathrm{Bu}^{1}$) (Found: C, $71.4 ; \mathrm{H}, 8.25 ; \mathrm{N}, 4.6 . \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires $\mathrm{C}, 71.26$; H, 8.31; N, 4.62\%).

Acknowledgements

We thank the SERC for an Earmarked Studentship (to R. J. M.) and Pfizer Central Research for a CASE award (to R. J. M.).

References

1 T. Durst, R. V. D. Elzen and M. J. LeBelle, J. Am. Chem. Soc., 1972, 94, 9261.
2 I. E. Markó, Comprehensive Organic Synthesis, eds. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 3, ch. 3.10.

3 I. Coldham, J. Chem. Soc., Perkin Trans. I, 1993, 1275.
4 M. T. Reetz and D. Schinzer, Tetrahedron Lett., 1975, 3485;
C. A. Broka and T. Shen, J. Am. Chem. Soc., 1989, 111, 2981;
Y. Murata and T. Nakai, Chem. Lett., 1990, 2069.

5 I. Coldham, A. J. Collis, R. J. Mould and R. E. Rathmell, Tetrahedron Lett., 1995, 36, 3557.
6 J. Âhman and P. Somfai, J. Am. Chem. Soc, 1994, 116,9781; J. Åhman and P. Somfai, Tetrahedron Lett., 1995, 36, 303.
7 T. Wakaimiya, K. Shimbo, T. Shiba, K. Nakajima, M. Neya and K. Okawa, Bull. Chem. Soc. Jpn., 1982, 55, 3878; J. E. Baldwin, R. M. Adlington and N. G. Robinson, J. Chem. Soc., Chem. Commun., 1987, 153.
8 J. Åhman and P. Somfai, Synth. Commun., 1994, 241121.
9 Y. Ittah, Y. Sasson, I. Shahak, S. Tsaroom and J. Blum, J. Org. Chem., 1978, 43, 4271.

10 F. Matsuura, Y. Hamada and T. Shioiri, Tetrahedron, 1993, 49, 8211.

11 I. Coldham, A. J. Collis and R. J. Mould, unpublished results.
12 I. Coldham, A. J. Collis, R. J. Mould and D. E. Robinson, Synthesis, 1995, 1147.
13 D. L. Nagel, P. B. Woller and N. H. Cromwell, J. Org. Chem., 1971, 36, 3911.
14 M. E. M. Attia, Y. Gelas-Mialhe and R. Vessiere, Can. J. Chem., 1983, 61, 2126.
15 D. Borel, Y. Gelas-Mialhe and R. Vessiere, Can. J. Chem., 1976, 54, 1590; J. Sauleau, A. Sauleau and J. Huet, Bull. Soc. Chim. Fr., 1978, 97; W. H. Pearson, Tetrahedron Lett., 1985, 26, 3527; T. Hudlicky, J. O. Frazier, G. Seoane, M. Tiedje, A. Seoane, L. D. Kwart and C. Beal, J. Am. Chem. Soc., 1986, 108, 3755.

16 J. Åhman, P. Somfai and D. Tanner, J. Chem. Soc., Chem. Commun., 1994, 2785; P. Somfai and J. Åhman, Tetrahedron Lett., 1995, 36, 1953.

17 Y.-D. Wu, K. N. Houk and J. A. Marshall, J. Org. Chem., 1990, 55, 1421; K. Mikami, T. Uchida, T. Hirano, Y.-D. Wu and K. N. Houk, Tetrahedron, 1994, 50, 5917.
18 R. Bartnik, A. Eddaif, A. Laurent and S. Lesniak, Bull. Pol. Acad. Sci., Chem., 1986, 34, 27.

Paper 5/04060D
Received 23rd June 1995
Accepted 17th July 1995

